Sunday, 28 May 2017

On This Day in Math - May 28



Twice two makes four seems to me
simply a piece of insolence. 
Twice two makes four is a pert coxcomb who stands
with arms akimbo barring your path and spitting.
I admit that twice two makes four is an excellent thing,
but if we are to give everything its due,
twice two makes five is sometimes
a very charming thing too.  
~Fyodor Mikhailovich Dostoevsky

The 148th day of the year;  148 "Primelicious", 21 + 1 is prime,24 + 1 is prime, and 28 + 1, and the three results add to a prime, 3+17+257 = 277. Looking for more Primelicious numbers.

148 is also a Loeschian number, a number of the form a2 + ab + b2. These numbers and the triples (a,b,L) formed by points in space are used, among other places in locations of spheres under hexagonal packing. (If someone knows the source of the term "Loeschian" I would love to know.)

A Vampire number is a number whose digits can be regrouped into two smaller numbers that multiply to make the original (1260 = 21*60).  There are 148 vampire numbers with six digits.   


EVENTS
585 BC Thales predicted the total eclipse of the sun that took place on this date. See Herschel, Outline of Astronomy (1902), pp. 833 and 839. [Eves, Circles, 33◦] *VFR  WW Rouse Ball says it is uncertain whether the date is the 585 date, or Sep 30, 609 BC.  Heath, and most others, seem to settle on the 585 BC date.

1765 The Longitude Board at Greenwich awards Leonhard Euler an amount of 300 Pounds, "Reward for Theorems furnished by him to assist Professor Mayer in the Construction of Lunar Tables upon the Principles of Gravitation laid down by Sir Isaac Newton."
Tobias Mayer had died in 1762, but his widow received an amount of 3000 Pounds for his work in the same meeting for his construction of the tables, which she signed over to the Committee. *Derek Howse, Britain's Board of Longitude:The Finances, 1714-1828

1783, Benjamin Franklin receives a letter at his hotel in Paris from Wolfgang von Kempelen, creator of the Turk chess playing automaton, inviting him to see and play his automaton as well as inspect the half-finished talking machine.
Franklin accepted the challenge, played the Turk a few days later at the Café de la Regence and lost. Although Franklin was a lover of chess, he does not mention this event in any of his recorded correspondence, perhaps, some explain, because he was known to be a very poor loser. *Tom Standage, The Turk, 2002 Walker Publishing
*Bibliophilia@Libroantiguo

In 1937, the Golden Gate Bridge, San Francisco was ceremonially opened to vehicles by President Franklin Delano Roosevelt who pressed a telegraph key in the White House. Within the first hour after the toll gates opened, 1,800 cars crossed the bridge. By day's end, 32,300 vehicles and 19,350 pedestrians had paid to pass over the bridge. A firework display that night celebrated the opening of the bridge. The previous day, a Pedestrian Day had been held which first opened the bridge for public use. The building and design of the bridge had been supervised by chief engineer Joseph B. Strauss. Construction had started on 5 Jan 1933. It was the first bridge to span the mouth of a major U.S. ocean harbour.*TIS

1959 Committee formed which developed COBOL. COBOL is one of the oldest programming languages. Its name is an acronym for COmmon Business-Oriented Language, defining its primary domain in business, finance, and administrative systems for companies and governments.
The COBOL specification was created by a committee of researchers from private industry, universities, and government during the second half of 1959. The specifications were to a great extent inspired by the FLOW-MATIC language invented by Grace Hopper - commonly referred to as "the mother of the COBOL language." The IBM COMTRAN language invented by Bob Bemer was also drawn upon, but the FACT language specification from Honeywell was not distributed to committee members until late in the process and had relatively little impact. FLOW-MATIC's status as the only language of the bunch to have actually been implemented made it particularly attractive to the committee.*Wik

1981 The New Scientist (pp 506-507) describes a mathematical theory of how coloration develops in animals. Zebras have stripes rather that spots because coloring is determined at an early stage of the development of the fetus. [Mathematics Magazine 54 (1981), p 215.] *VFR

In 1998, NASA released a picture of what California astronomer Susan Terebey said may be the first extrasolar planet ever seen, dubbed TMR-1C. Digitized pictures taken by the Hubbell Space Telescope seemed to show an image of a planet apparently flung from a pair of young stars in the constellation Taurus, 450 light years from Earth. Located at one end of a bright trail that led from the newborn stars, the faint object appeared as if it was their offspring, a planet a few times as massive as Jupiter that had been expelled from its birthplace. However, by the following year, scrutiny of its spectrum suggested to other astronomers that it could be merely a background star. Telescopic tracking for several years should resolve the answer.*TIS

2013 David L. Donoho has been awarded the 2013 Shaw Prize in Mathematical Sciences for his profound contributions to modern mathematical statistics and in particular the development of optimal algorithms for statistical estimation in the presence of noise and of efficient techniques for sparse representation and recovery in large data-sets.
The Anne T and Robert M Bass Professor of the Humanities and Sciences, and Professor of Statistics at Stanford University, Dr. Donoho is well known for his role in developing new mathematical and statistical tools to deal with problems ranging from large data-sets in high dimensions to contamination with noise. *SIAM


BIRTHS

1676 Jacopo Riccati (28 May 1676 – 15 April 1754) was an Italian mathematician who wrote on philosophy, physics and differential equations. He is chiefly known for the Riccati differential equation. *SAU   The general Riccati diferential equation is of the form dy/dx = A+ By + Cy2 where A, B, and C represent functions of x..(there are actually several types of diff equations known by this term..)  He had two sons who also contributed to mathematics.  Vincenzo was a professor in Bologna, and Giordano published works in Geometry and on Newton's works.  Jacopo (and both sons) died in Treviso.

1710 Johann(II) Bernoulli (28 May 1710 in Basel, Switzerland - 17 July 1790 in Basel, Switzerland)
was a member of the Swiss mathematical family. He worked mainly on heat and light. He was one of three sons of Johann Bernoulli. In fact he was the most successful of the three. He originally studied law and in 1727 he obtained the degree of doctor of jurisprudence. He worked on mathematics both with his father and as an independent worker. He had the remarkable distinction of winning the Prize of the Paris Academy on no less than four separate occasions. On the strength of this he was appointed to his father's chair in Basel when Johann Bernoulli died. *Wik

1850 Wooster Woodruff Beman (May 28, 1850 - January 1, 1922). He attended school in Valparaiso, Ind., and entered the University of Michigan in 1866, receiving his B.A. degree in 1870. After teaching for a year at Kalamazoo College as instructor in Greek and mathematics, he returned to the University of Michigan as an instructor while also working for his master's degree, which he received in 1873. In 1874, he became assistant professor, in 1882 associate professor, and in 1887 full professor.
In addition to his teaching, Beman wrote books and articles on the history and teaching of elementary mathematics. Among his works are "Nature and Meaning of Numbers" (from the German), and "Continuity and Irrational Numbers." He was the joint author, with D. E. Smith, of "Plane and Solid Geometry," "Higher Arithmetic," "New Plane and Solid Geometry," "Elements of Algebra," "Academic Algebra," translations of "Famous Problems of Elementary Geometry," and "A Brief History of Mathematics." *Michigan Historical Collections. They also were editors of T. Sundara Row's Geometric Exercises in Paper Folding:

1888 Jim Thorpe (May 28, 1888 – March 28, 1953) World-class athlete He was born in a one-room cabin near Prague in Indian Territory, now Oklahoma. Thorpe's versatile talents earned him the distinction of being chosen, in 1950, the greatest football player and the greatest American athlete of the first half of the twentieth century by American sports writers and broadcasters. Thorpe won the gold medal in both the decathlon and pentathlon events at the Stockholm Olympics, but was stripped of his medals when a reporter revealed he had played semi-professional baseball. It was not until after his death that Thorpe's amateur status was restored, and his name reentered in the Olympic record book. (Library of Congress web page)
So why is this on a math page…Well it seems that Jim Thorpe may have indirectly influenced the naming of the # key on the telephone. One of several stories for how it is named is this one: In the 1960's when Bell Telephone added two new buttons for push button telephones, they used the * symbol and the # symbol. Although most people call the * an asterisk, the telephone folks decided to use "star". The other symbol, #, has been called lots of different names such as crosshatch, and now the common term on twitter seems to be "hashtag".  Others have  referred to it as tic-tac-toe, the pound sign, and the number sign (leave it to the telephone company to put the number sign on one of the two keys without a number); but the term now "officially" used by the American telephone industry for the symbol is octothorpe although it is more often called the pound key in conversations with the public.
It seems that the name was made up more or less spontaneously by Bell Engineer Don MacPherson while meeting with their first potential customer. The octo part was chosen because of the eight points at the ends of the line segments, and the thorpe was in honor of Jim Thorpe, the great Native American athlete. Why honor Thorpe? At the time MacPherson was working with a group that was trying to restore Thorpe's Olympic medals, which had been taken from him when it was found he had played semi-professional baseball prior to his track victories in the Olympics in Sweden. [It's not math, but I love the story that when the King of Sweden gave him the gold medal, the king said, "You are surely the greatest athlete on the earth". The modest Thorpe smiled and replied, "Thanks, King."]
There are a host of other names for the # symbol, and many of them can be found at this page from Wikipedia which includes several different stories about the creation of "octothorpe" or "octothorn" and also has this rather interesting clip:
"The pronunciation of # as `pound' is common in the US but a bad idea. The British Commonwealth has its own, rather more apposite, use of `pound sign. On British keyboards the UK pound currency symbol once frequenlty replaced #, with # being elsewhere on the keyboard. The US usage derives from an old-fashioned commercial practice of using a # suffix to tag pound weights on bills of lading. The character is usually pronounced `hash' outside the US. There are more culture wars over the correct name of this character than any other, which has led to the “ha-ha” only serious suggestion that it be pronounced `shibboleth' (see Judges 12:6 in the Old Testament)." (pballew Etymology page)

1908 Egbert van Kampen, In 1908 he left Europe and traveled to the United States to take up the position which he had been offered at Johns Hopkins University in Baltimore, Maryland. There he met Oscar Zariski who had taught at Johns Hopkins University as a Johnston Scholar from 1927 until 1929 when he had joined the Faculty. Zariski had been working on the fundamental group of the complement of an algebraic curve, and he had found generators and relations for the fundamental group but was unable to show that he had found sufficient relations to give a presentation for the group. Van Kampen solved the problem, showing that Zariski's relations were sufficient, and the result is now known as the Zariski–van Kampen theorem. This led van Kampen to formulate and prove what is nowadays known as the Seifert–van Kampen theorem. *Wik

1912 Ruby Violet Payne-Scott, (28 May 1912 – 25 May 1981) was an Australian pioneer in radiophysics and radio astronomy, and was the first female radio astronomer.
One of the more outstanding physicists that Australia has ever produced and one of the first people in the world to consider the possibility of radio astronomy, and thereby responsible for what is now a fundamental part of the modern lexicon of science, she was often the only woman in her classes at the University of Sydney.
Her career arguably reached its zenith while working for the Australian government's Commonwealth Scientific and Industrial Research Organisation (then called CSIR, now known as CSIRO) at Dover Heights, Hornsby and especially Potts Hill in Sydney. Some of her fundamental contributions to solar radio astronomy came at the end of this period. She is the discoverer of Type I and Type III bursts and participated in the recognition of Type II and IV bursts.
She played a major role in the first-ever radio astronomical interferometer observation from 26 January 1946, when the sea-cliff interferometer was used to determine the position and angular size of a solar burst. This observation occurred at either Dover Heights (ex Army shore defence radar) or at Beacon Hill, near Collaroy on Sydney's north shore (ex Royal Australian Air Force surveillance radar establishment - however this radar did not become active until early 1950).[4]
During World War II, she was engaged in top secret work investigating radar. She was the expert on the detection of aircraft using PPI (Plan Position Indicator) displays. She was also at the time a member of the Communist Party and an early advocate for women's rights. The Australian Security Intelligence Organisation (ASIO) was interested in Payne-Scott and had a substantial file on her activities, with some distortions.
*Wik

1912 Hans Zassenhaus, algebraist. (28 May 1912–21 November 1991) was a German mathematician, known for work in many parts of abstract algebra, and as a pioneer of computer algebra.
He was born in Koblenz–Moselweiss, and became a student and then assistant of Emil Artin. He was subsequently a professor at McGill University, the University of Notre Dame, and Ohio State University, and was one of the founding editors of the Journal of Number Theory. He died in Columbus, Ohio. *Wik


1930 Frank Donald Drake ( May 28, 1930 -  ) is an American astronomer who formulated the Drake Equation (1961) to estimate the number of technological civilizations that may exist in our galaxy. In 1960, Drake led the first search, the two-month Project Ozma to listen for patterns in radio waves with a complex, ordered pattern that might be assumed to represent messages from some extraterrestrial intelligence. Carl Sagan and Drake designed the plaques on Pioneer 10 and Pioneer 11 for the purpose of greeting and informing any extraterrestrial life that might find the vessels after they left the solar system. *TIS




DEATHS

1997 Ronald Vernon Book (April 1937 – May 28, 1997 in Santa Barbara, California) worked in theoretical computer science. He published more than 150 papers in scientific journals.

2003 Ilya Prigogine (25 Jan 1917; 28 May 2003) Russian-born Belgian physical chemist who received the Nobel Prize for Chemistry in 1977 for contributions to nonequilibrium thermodynamics, or how life could continue indefinitely in apparent defiance of the classical laws of physics. The main theme of Prigogine's work was the search for a better understanding of the role of time in the physical sciences and in biology. He attempted to reconcile a tendency in nature for disorder to increase (for statues to crumble or ice cubes to melt, as described in the second law of thermodynamics) with so-called "self-organisation", a countervailing tendency to create order from disorder (as seen in, for example, the formation of the complex proteins in a living creature from a mixture of simple molecules). *TIS




Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Saturday, 27 May 2017

On This Day in Math - May 27



 The mathematics are distinguished by


a particular privilege, that is,

in the course of ages, they may always advance

and can never recede. 


 ~Edward Gibbon, Decline and Fall of the Roman Empire

The 147th day of the year; if you iterate the process of summing the cubes of the digits of a number starting with 147, you eventually start repeating 153. This seems to be true for all multiples of three.

If there are no fouls, the maximum score on a snooker break is 147.

And Derek Orr@Derektionary pointed out that "147 is the smallest number formed by a column of numbers on a phone button pad"


EVENTS
669 BC "If the Sun at its rising is like a crescent and wears a crown like the Moon: the king wll capture his enemy's land; evil will leave the land, and (the land) will experience good . . . " Refers to a solar eclipse of 27 May 669 BC. BY Rasil the older, Babylonian scribe to the king. *NSEC

1638  In a letter to Fr Marin Mersenne, Descartes claimed to have a general rule to find  number n with a sum of its factors S(n) given only the ratio of n:S(n) = p/q.  He showed that n:S(n) = 4/9 is solved for n= 360 .  Fermat responded to Mersenne that 2016 has the same property.. (for students, S(6) would = 1+2+3+6 = 12)  (History of the theory of numbers  By Leonard Eugene Dickson)

 1832 In a letter to Legendre, Jacobi stated that the solutions to x2-ay2=1 can be expressed in terms of the sine and cosine of
 



1849 Chebyshev defends his doctoral dissertation on the theory of numbers at Petersburg University.*VFR

1919 Astronomical party arrives at  São Tomé and Príncipe, officially the Democratic Republic of São Tomé and Príncipe, is a Portuguese-speaking island nation in the Gulf of Guinea, off the western equatorial coast of Central Africa.  Príncipe was the site where astronomical observations of the total solar eclipse of 29 May 1919 confirmed Einstein's prediction of the curvature of light.  The expedition was sponsored by the Royal Society and led by Sir Arthur Stanley Eddington.

1937 Golden Gate bridge opened.*VFR In 1937, the Golden Gate Bridge, San Francisco was first opened to the public as a Pedestrian Day. By 6 am, 18,000 people were waiting for the toll gates to open. Many crossed in unique ways, hoping to be prize-winners as the first to establish a record, whether by walking backwards or on stilts, tap-dancing, roller-skating or playing instruments. It was a sprinter, Donald Bryan, from San Francisco Junior College, who became the first person to cross the entire span. At 10 am, Chief engineer Joseph Strauss gave no speech, but instead read a poem he had written for the event. By the end of the day, about 200,000 people had joined the celebration. The bridge was ceremonially opened to traffic the next day.*TIS




BIRTHS
1332 Ibn Khaldūn or Ibn Khaldoun (full name, Arabic: أبو زيد عبد الرحمن بن محمد بن خلدون الحضرمي‎, Abū Zayd ‘Abdu r-Raḥmān bin Muḥammad bin Khaldūn Al-Ḥaḍrami, May 27, 1332 AD/732 AH – March 19, 1406 AD/808 AH) was a Muslim historiographer and historian who is often viewed as one of the fathers of modern historiography,sociology and economics.
He is best known for his Muqaddimah (known as Prolegomenon in English), which was discovered, evaluated and fully appreciated first by 19th century European scholarship, although it has also had considerable influence on 17th-century Ottoman historians like Ḥajjī Khalīfa and Mustafa Naima who relied on his theories to analyze the growth and decline of the Ottoman Empire. Later in the 19th century, Western scholars recognized him as one of the greatest philosophers to come out of the Muslim world. *Wik

1660 Francis Hauksbee the elder (baptized on 27 May 1660 in Colchester–buried in St Dunstan's-in-the-West, London on 29 April 1713.), also known as Francis Hawksbee, was an 18th-century English scientist best known for his work on electricity and electrostatic repulsion.
Initially apprenticed in 1678 to his elder brother as a draper, Hauksbee became Isaac Newton’s lab assistant. In 1703 he was appointed curator, instrument maker and experimentalist of the Royal Society by Newton, who had recently become president of the society and wished to resurrect the Royal Society’s weekly demonstrations.
Until 1705, most of these experiments were air pump experiments of a mundane nature, but Hauksbee then turned to investigating the luminosity of mercury which was known to emit a glow under barometric vacuum conditions.
By 1705, Hauksbee had discovered that if he placed a small amount of mercury in the glass of his modified version of Otto von Guericke's generator, evacuated the air from it to create a mild vacuum and rubbed the ball in order to build up a charge, a glow was visible if he placed his hand on the outside of the ball. This glow was bright enough to read by. It seemed to be similar to St. Elmo's Fire. This effect later became the basis of the gas-discharge lamp, which led to neon lighting and mercury vapor lamps. In 1706 he produced an 'Influence machine' to generate this effect. He was elected a Fellow of the Royal Society the same year.



Hauksbee continued to experiment with electricity, making numerous observations and developing machines to generate and demonstrate various electrical phenomena. In 1709 he published Physico-Mechanical Experiments on Various Subjects which summarized much of his scientific work.
In 1708, Hauksbee independently discovered Charles' law of gases, which states that, for a given mass of gas at a constant pressure, the volume of the gas is proportional to its temperature.
The Royal Society Hauksbee Awards, awarded in 2010, were given by the Royal Society to the “unsung heroes of science, technology, engineering and mathematics.” *Wik

1762 Benjamin Franklin writes to Sir John Pringle, who would become president of the Royal Society in 1772 and physician to King George III in 1774 with a map first naming the "Gulph Stream."

Boston customs officials observed a two-weeks’ difference in the arrival times of ships sailing east to west from England to New York versus England to Rhode Island. He consulted a cousin, Nantucket mariner Timothy Folger, about the problem. Folger was certain that the Gulf Stream was the culprit, for Rhode Island captains were aware of the current through their whaling activities, whereas those of the English packet boats were not. Franklin asked Folger to add the location and dimensions of this current to an available chart so that he could communicate the information to the English sea captains.
Published in England circa 1768, the map was mostly ignored by the stubborn English navigators. Though few copies of this English version seem to have survived (Library of Congress has one), Franklin also had the chart printed in France around 1785, and he published it again with his article “Sundry Maritime Observations” in the Transactions of the American Philosophical Society in 1786. However, it took a long time before the British followed Franklin’s advice on how to avoid fighting this current.
*princeton.edu



1862 John Edward Campbell (27 May 1862, Lisburn, Ireland – 1 October 1924, Oxford, Oxfordshire, England) is remembered for the Campbell-Baker-Hausdorff theorem which gives a formula for multiplication of exponentials in Lie algebras. *SAU His 1903 book, Introductory Treatise on Lie's Theory of Finite Continuous Transformation Groups, popularized the ideas of Sophus Lie among British mathematicians.
He was elected a Fellow of the Royal Society in 1905, and served as President of the London Mathematical Society from 1918 to 1920. *Wik & *Renaissance Mathematicus

1967 Sir John Douglas Cockcroft (27 May 1897, 18 Sep 1967) British physicist, who shared (with Ernest T.S. Walton of Ireland) the 1951 Nobel Prize for Physics for pioneering the use of particle accelerators to study the atomic nucleus. Together, in 1929, they built an accelerator, the Cockcroft-Walton generator, that generated large numbers of particles at lower energies - the first atom-smasher. In 1932, they used it to disintegrate lithium atoms by bombarding them with protons, the first artificial nuclear reaction not utilizing radioactive substances. They conducted further research on the splitting of other atoms and established the importance of accelerators as a tool for nuclear research. Their accelerator design became one of the most useful in the world's laboratories. *TIS He was the first Master of Churchill College and is buried at the Parish of the Ascension Burial Ground in Cambridge, together with his wife Elizabeth and son John, known as Timothy, who had died at the age of two in 1929.*Wik

1907 Herbert Karl Johannes Seifert (May 27, 1907, Bernstadt – October 1, 1996, Heidelberg) was a German mathematician known for his work in topology. Seifert did other important work related to knot invariants. In 1934 he published results, using surfaces today called Seifert surfaces, which he used to calculate homological knot invariants. Another topic which Seifert worked on was the homeomorphism problem for 3-dimensional closed manifolds. *SAU


DEATHS
1896 Aleksandr Grigorievich Stoletov (August 10, 1839 – May 27, 1896) was a Russian physicist, founder of electrical engineering, and professor in Moscow University. He was the brother of general Nikolai Stoletov. By the end of the 20th century his disciples had headed the chairs of Physics in five out of seven major universities in Russia.
His major contributions include pioneer work in the field of ferromagnetism and discovery of the laws and principles of the outer photoelectric effect.*Wik

1928 Arthur Moritz Schönflies (April 17, 1853 – May 27, 1928) worked first on geometry and kinematics but became best known for his work on set theory and crystallography. He classified the 230 space groups in 1891 He studied under Kummer and Weierstrass, and was influenced by Felix Klein.
The Schoenflies problem is to prove that an (n − 1)-sphere in Euclidean n-space bounds a topological ball, however embedded. This question is much more subtle than initially appears. *Wik *SAU

1960  Milton B. Porter  Professor at Univ of Texas, he was the dissertation adviser for Goldie Horton, the first woman to get a PhD in Mathematics at Univ of Texas.  Eighteen years later he married her.  He died in Austin Texas.

1962 FELIX ADALBERT BEHREND (23 April 1911 in Charlottenburg, Berlin, Germany -27 May 1962 in Richmond, Victoria, Australia) Felix Behrend's sympathies within pure mathematics were wide, and his creativeness ranged over theory of numbers, algebraic equations, topology, and foundations of analysis. A problem that caught his fancy early and that still occupied him shortly before his death was that of finite models in Euclidean 3-space of the real projective plane. He remained productive for much of the two years of his final illness, and left many unfinished notes in which his work on foundations of analysis is continued. (From his obituary by B H Neumann)

1964 Colin Brian Haselgrove  (26 September 1926 – 27 May 1964) In 1958 Haselgrove published his most famous number theory result in A disproof of a conjecture of Pólya. The conjecture of Pólya claims that for every x greater than 1 there are at least as many numbers less than or equal to x having an odd number of prime factors as there are numbers with an even number of prime factors. R S Lehman and W G Spohn had verified the conjecture for all numbers x up to 800,000 but Haselgrove found a counterexample using methods based on those developed by Ingham with the help of computations carried out on the EDSAC 1 computer at Cambridge. He also verified the calculations using Manchester University's Mark I computer before publishing the results. In the same paper Haselgrove announced that he had also disproved a number theory conjecture of Turán. *SAU

2012 Friedrich Ernst Peter Hirzebruch (17 October 1927 – 27 May 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure in his generation. He has been described as "the most important mathematician in the Germany of the postwar period.
Amongst many other honours, Hirzebruch was awarded a Wolf Prize in Mathematics in 1988 and a Lobachevsky Medal in 1989. The government of Japan awarded him the Order of the Sacred Treasure in 1996. He also won an Einstein Medal in 1999, and received the Cantor medal in 2004.*Wik


Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Friday, 26 May 2017

On This Day in Math - May 26





You cannot feed the hungry on statistics. 
~Heinrich Heine


The 146th day of the year; 146 is 222 in base eight. *What's So Special About This Number

Jim Wilder@wilderlab pointed out that the sum of the divisors of 146; 1+2+73+146 also equals 222.
Finding value of 222 in base n is nice introduction to polynomials, and (IMHO) leads students to understand polynomials (and base 10) much better.

The decimal expansion of 1/293 has a period of 146 digits.


EVENTS
 
1676 Antonie van Leeuwenhoek applied his hobby of making microscopes from his own handmade lenses to observe some water running off a roof during a heavy rainstorm. He finds that it contains, in his words, "very little animalcules." The life he has found in the runoff water is not present in pure rainwater. This was a fundamental discovery, for it showed that the bacteria and one-celled animals did not fall from the sky. When a ball of molten glass is inflated like a balloon, a small droplet of the hot fluid collects at the very bottom the bubble. Leeuwenhoek used these droplets as microscope lenses to view the animalcules. Despite their crude nature, those early lenses enabled Leeuwenhoek to describe an amazing world of microscopic life. * TIS Compound microscopes (that is, microscopes using more than one lens) had been invented around 1595, nearly forty years before Leeuwenhoek was born. Several of Leeuwenhoek's predecessors and contemporaries, notably Robert Hooke in England and Jan Swammerdam in the Netherlands, had built compound microscopes and were making important discoveries with them. These were much more similar to the microscopes in use today. Thus, although Leeuwenhoek is sometimes called "the inventor of the microscope," he was no such thing.

1796 Gauss writes to his counselor, Zimmerman, who had apparently encouraged Gauss to publish the results of his studies on construction of the 17-gon, and the quadratic reciprocity law. Guass wrote that he was prepared to undertake the project, but preferred to write it in German before doing so in Latin where he feared he would be subject to criticism "from another side."
"Since I have an Euler and a Lagrange as predecessors I shall have to marshall great diligence for the composition itself."
*Uta Merzbach, An Early Version of Guass' Disquisitiones Arithmeticae, Mathematical Perspectives, 1981

1896 The Dow Jones Industrial Average was created by Charles Dow and Edward Jones, New York financial reporters.  Originally consisted of 11 stocks.  They published The Customers Appreciation Letter, which would become the Wall Street Journal.  The first index published was on July 3, 1884 *Kane, Famous First Facts 

1901 Giuseppe Peano terminated his services to the Royal Military Academy in Turin where he had taught for fifteen years. The trouble was with his teaching. Earlier he was a very good teacher and the author of several excellent texts, but as his work in mathematical logic matured he devoted too much time to what the students called “the symbols.” [H. C. Kennedy, Peano,p. 100] *VFR

1930 Name for newly discovered planet Pluto announced by United Press. The name had been the suggestion of an English 11 year old girl to her grandfather, a former librarian at the Bodleian Library in Oxford. (see March 14, 1930). I think the fact that PL abbreviation for Pluto (and Percevil Lowell) influenced the folks at the Flgastaff observatory.

2002 The minor planet 28242 was named after the Mongolian Mathematician Minggatu ( Sharabiin Myangat)as 28242 Mingantu.He was an astronomer, mathematician, and topographic scientist at the Qing court. His courtesy name was Jing An. He was the first person in China who calculated infinite series and obtained more than 10 formulae. In the 1730s, he first established and used what was later to be known as Catalan numbers. The Jesuit missionaries' influence, particularly Pierre Jartoux, can be seen by many traces of European mathematics in his works. *Wik


 
BIRTHS
 
1623 Sir William Petty FRS (26 May 1623 – 16 December 1687) was an English economist, scientist and philosopher. He first became prominent serving Oliver Cromwell and Commonwealth in Ireland. He developed efficient methods to survey the land that was to be confiscated and given to Cromwell's soldiers. He also managed to remain prominent under King Charles II and King James II, as did many others who had served Cromwell.
He was Member of the Parliament of England briefly and was also a scientist, inventor, and entrepreneur, and was a charter member of the Royal Society. It is for his theories on economics and his methods of political arithmetic that he is best remembered, however, and to him is attributed the philosophy of 'laissez-faire' in relation to government activity. He was knighted in 1661. He was the great-grandfather of Prime Minister William Petty Fitzmaurice, 2nd Earl of Shelburne and 1st Marquess of Lansdowne.
Petty was a founder member of The Royal Society. He was born and buried in Romsey, and was a friend of Samuel Pepys.
He is best known for economic history and statistic writings, pre-Adam Smith. Of particular interest were Petty's forays into statistical analysis. Petty's work in political arithmetic, along with the work of John Graunt, laid the foundation for modern census techniques. Moreover, this work in statistical analysis, when further expanded by writers like Josiah Child documented some of the first expositions of modern insurance. Vernon Louis Parrington notes him as an early expositor of the labour theory of value as discussed in Treatise of Taxes in 1692.
Petty was knighted in 1661 by Charles II and returned to Ireland in 1666, where he remained for most of the next twenty years. *Wik

1667 Abraham De Moivre (26 May 1667 in Vitry-le-François, Champagne, France – 27 November 1754 in London, England) French mathematician who was a pioneer in the development of analytic trigonometry and in the theory of probability. He published The Doctrine of Chance in 1718. The definition of statistical independence appears in this book together with many problems with dice and other games. He also investigated mortality statistics and the foundation of the theory of annuities. He died in poverty, and correctly predicted the day of his own death. He found that he was sleeping 15 minutes longer each night and from this the arithmetic progression, calculated that he would die on the day that he slept for 24 hours. *TIS
Born in Vitry-le-Fran¸cois, France. Being a Protestant, he emigrated to England following the Edict of Nantes in 1685 where he eked out a living as a tutor of mathe­matics. He became thoroughly Anglicized and pronounced his name “Mowve-re.” *VFR
In Miscellanea Analytica (1730) appears Stirling's formula (wrongly attributed to Stirling) which de Moivre used in 1733 to derive the normal curve as an approximation to the binomial. In the second edition of the book in 1738 de Moivre gives credit to Stirling for an improvement to the formula. De Moivre is also remembered for his formula for (cos x + i sin x)n which took trigonometry into analysis.

1750 William Morgan, FRS (26 May 1750– 4 May 1833) was a Welsh physician, physicist and statistician, who is considered the father of modern actuarial science. *Wik

1826 Richard Christopher Carrington (26 May 1826 – 27 November 1875) English astronomer who was the first to map the motions of sunspots and thus discover from them that the Sun rotates faster at the equator than near the poles (equatorial acceleration). He observed that the sunspots were not attached to any solid object, and also discovered the movement of sunspot zones toward the Sun's equator as the solar cycle progresses. On 1 Sep 1859, Carrington was the first to record the observation of a solar flare. *TIS

1837 Washington Augustus Roebling  (May 26, 1837 – July 21, 1926) U.S. civil engineer under whose direction the Brooklyn Bridge, New York City, was completed in 1883. The bridge was designed by Roebling with his father, John Augustus Roebling, from whom he had gained experience building wire-rope suspension bridges. Upon his father's death, he superintended the building of the Brooklyn Bridge (1869-83). He was disabled by decompression sickness after entering a caisson in 1872. He was brought out nearly insensible and his life was saved with difficulty. Because of resulting poor health, he directed operations from his home in Brooklyn overlooking the site. Though he continued to head the family's wire-rope manufacturing business for several years, medical problems forced retirement (1888).*TIS

1899 Otto Neugebauer (May 26, 1899 – February 19, 1990)  historian of ancient and medieval mathematics and astronomy. *VFR
  He was an Austrian-American mathematician and historian of science who became known for his research on the history of astronomy and the other exact sciences in antiquity and into the Middle Ages. By studying clay tablets he discovered that the ancient Babylonians knew much more about mathematics and astronomy than had been previously realized. The National Academy of Sciences has called Neugebauer "the most original and productive scholar of the history of the exact sciences, perhaps of the history of science, of our age." *Wik



DEATHS

 735 Bede  ( 672/673 – 26 May 735),(often know as the Venerable Bede) Anglo-Saxon theologian, historian and scholar whose writings established the use of BC and AD with dates. He applied a knowledge of astronomy for the purpose of calculating the correct date for Easter. He found that due to an imperfection in Sosigenes' Julian calendar, that the vernal equinox had slipped to a point three days before the traditional date of 21 Mar. However, no action was taken to make the necessary adjustment in the number of leap years per millenium until nine centuries later. Bede held that the earth was a sphere. He preserved Pytheas' suggestion relating tides to the phases of the moon, and followed Seleucus' idea that a high tide is a local effect and does not occur everywhere at the same point in time. *TIS
Bede was first buried at the monastery of St. Paul at Jarrow in 735. However, in about 1022, his bones were brought to Durham where they were placed with those of St. Cuthbert in the Choir. In 1370, Bede's remains were moved to a splendid shrine in the Galilee Chapel. This shrine was destroyed during the Reformation in 1540 and Bede's bones were then buried in a grave where the shrine had stood.
Eventually, in 1831, the present tomb, made from polished Carboniferous limestone, was erected over Bede's grave. It has the following simple inscription cut into its surface:
HAC SUNT IN FOSSA BEDAE VENERABILIS OSSA
Translated from the Latin, this means 'In this tomb are the bones of the Venerable Bede' *Religion Facts


1926 Frank Nelson Cole (September 20, 1861 – May 26, 1926) At the time of his death he was a professor of mathematics at Columbia, but was living in a boarding house, under an assumed name, claiming to be a bookkeeper. The AMS Cole prize in algebra is named after him.*VFR 
His main research contributions are to number theory, in particular to prime numbers, and to group theory. In number theory he achieved the distinction of being the first to factor 267 - 1 and he did this using quadratic remainders. In fact
267 - 1 = 147573952589676412927 = 761838257287 × 193707721
which a computer will compute in a few seconds today. His contributions to factoring large numbers was published in 1903. His output of research papers was, however, fairly modest and he published only around 25 papers during his career. These publications include his doctoral dissertation in 1886 and a discussion of the icosahedron in 1887. He published The linear functions of a complex variable in the Annals of Mathematics in 1890 then, between the years 1891 to 1893, he found the complete list of simple groups with orders between 200 and 600. Another publication worth mentioning is The triad systems of thirteen letters which he published in the Transactions of the American Mathematical Society in 1913.*Wik According to a notice in the American Mathematical Monthly, which he had edited for twenty-five  years, he died of a heart attack brought on by an infected tooth.

2003 Gerald Stanley Hawkins ( April 28, 1928 Gt. Yarmouth, Norfolkshire, U.K.  - May 26, 2003) was a British-born American radio-astronomer who used a computer to show that the stones and other archaeological features at Stonehenge formed a pattern of alignments with 12 major lunar and solar events, suggesting that it was used as a sort of neolithic observatory or astronomical calendar. In the 18th century, William Stukely had noticed that the horseshoe of trilithons and 19 bluestones opened up in the direction of the midsummer sunrise. In the 1960s, Hawkins, a British-born radio astronomer, identified 165 key points in the neolithic complex and found that many were strongly correlated with the rising and setting positions of the sun and moon over an 18.6-year cycle. In the 1990s, he studied the geometry of crop circles.  He retired to a Virginia farm in Rappahannock County with his second wife, Julia Dobson, and died there, suddenly, on May 26, 2003.







Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Thursday, 25 May 2017

An Incredibly Simple Method that Certain Quadratics are Not Factorable.



Almost four years ago my friend, Dave Renfro, sent me a packet of papers from his searching in the archives of old journals. I was on vacation at the time and on my return somehow put t hem away in the stacks beneath my library area. Four years later my wife was organizing my life as she occasionally does, and pulled them out for me to see if they were to keep, or throw out.

The first article I pulled out of  the thick packet was written about the time I was just being introduced to Algebra, in 1957 in the Mathematics Magazine. It was written by a Doyne Holder from Kinkaid School, in Houston, Tx. Amazingly, I spent a pretty full lifetime of studying and teaching mathematics and never had this insight, so it may also be true of other teachers. For them, walking in my footsteps, I share this beautiful little gem:

If a Quadratic of the form ax2 + bx + c, if all three coefficients a, b, and c are odd, then the quadratic is not factorable over the integers.

The proof is as simple as the ideas of quadratic multiplication. Assume the factors are mx+r and nx+s, then it must be true that

a=m*n and

c= r*s
And b = m*s + n*r, and since all of m,n,r, and s are odd, m*s is odd, and n*r is odd, but the sum of two odds can not be odd, and so b can not be odd.

He went on to show that for a larger degree polynomial, a similar proof exists that if the coefficient of the highest power, as well as the constant term and the linear coefficient are all odd, it is also impossible to factor the polynomial over the integers. This I will leave for the reader to enjoy the self discovery. If anyone gets terribly stuck I can supply a not too subtle clue, and if needed, the complete very short proof.

And now to dive into the rest of Dave's packet.... no treasure like an old math paper rediscovered.