Friday, 21 October 2016

On This Day in Math - October 21

“Martin has turned thousands of children into mathematicians, and thousands of mathematicians into children.”~Ron Graham on Martin Gardner

The 295th day of the year; 295 may be interesting only because it seems to be the least interesting day number of the year. (Willing to be contradicted, send your comments)
[Here are several of the best I received from David Brooks:
295 can be partitioned in 6486674127079088 ways.
295 is a 31-gonal number.

And Derek Orr pointed out that "295 is the second proposed Lychrel number." A Lychrel number is a natural number that cannot form a palindrome through the iterative process of repeatedly reversing its digits and adding the resulting numbers. This process is sometimes called the 196-algorithm, after the most famous number associated with the process. In base ten, no Lychrel numbers have been yet proved to exist, but many, including 196, are suspected on heuristic and statistical grounds. The name "Lychrel" was coined by Wade Van Landingham as a rough anagram of Cheryl, his girlfriend's first name.

1621 Kepler's Mother, Katherine, during her trial for witchcraft was shown the "instruments of torture."
"The whole case was now passed on the law faculty of the University of Tübingen, Kepler’s Alma Mater, who decided that Katharine should be taken to the hangman and shown the instruments of torture and ordered to confess. On 21st October 1621 this was duly carried out but the stubborn old lady refused to bend she said,"
“Do with me what you want. Even if you were to pull one vein after another out of my body, I would have nothing to admit.” Then she fell to her knees and said a Pater Noster. God would she said, bring the truth to light and after her death disclose that wrong and violence had been done to her. He would not take the Holy Ghost from her and would stand by her.
For more about this unusual woman, read Thony Christie's blog at *The Renaissance Mathematicus

1743 In the United States, on October 21, 1743, Benjamin Franklin tracked a hurricane for the first time. It was the first recorded instance in which the progressive movement of a storm system was recognized.

1796 The date of a still uninterpreted cryptic entry "Vicimus GEGAN"" in Gauss’s scientific diary. There is a another insertion that also remains uninterpreted. He wrote "REV. GALEN" in the diary on April 8, 1799 *VFR
*Genial Gauss Gottingen

1803 John Dalton's Atomic Theory was first presented on 21st October 1803 to the Manchester Literary and Philosophical Society of which he was President 1816-1844. *Open Plaques

1805 British Admiral Nelson defeated the combined French and Spanish fleets in the Battle of Trafalgar by adopting the tactic of breaking the enemy line in two and concentrating his firepower on a few ships (orthodox tactics had the opponents facing each other in roughly parallel lines—the “line-ahead” formation). For an analysis of why this works see David H. Nash, “Differential equations and the Battle of Trafalgar”, The College Mathematics Journal, 16(1985), 98–102. *VFR

1845 After two unsuccessful attempts to present his work in person to the Royal Astronomer Sir George Biddell Airy, John Couch Adams left a copy of his calculation regarding a hypothetical planet at the Royal Observatory. Airy criticized the work and didn’t search for the planet until later. Consequently he didn’t discover Neptune. See 23 September 1846.

1854 Florence Nightingale embarked for the Crimea on 21 October with thirty-eight nurses: ten Roman Catholic Sisters, eight Anglican Sisters of Mercy, six nurses from St. John's Institute, and fourteen from various hospitals. *Victorian Web Org

1965 Greece issued a postage stamp picturing Hipparchus and an astrolabe to commemorate the opening of the Evghenides Planetarium in Athens. [Scott #835]. *VFR

1976, the United States made a clean sweep of the Nobel Prizes, winning or sharing awards in chemistry, physics, medicine, economics, and literature. (No peace prize was awarded.)

1988 Science (pp. 374-375) reported that the 100-digit number 11104 + 1 was factored by using computers working in parallel using a quadratic sieve method. [Mathematics Magazine 62 (1989), p 70].*VFR

2011 Several people were awarded with the Ignobel Prize for mathematics for predictions about the end of the earth. Among the winners was the inappropriately named Elizabeth Clare Prophet who predicted the demise of the Earth in 1990, which most scholars on the existence of the earth dispute. *

2015 Marty McFly and Doctor Emmet Brown "return" to this date in the future in the 1989 Sci-fi-sequel, Back to the Future II. The "future" included rocket powered skateboards... Do Razors count?


1687 Nicolaus(I) Bernoulli (21 Oct 1687 in Basel, Switzerland - 29 Nov 1759 in Basel) Nicolaus Bernoulli was one of the famous Swiss family of mathematicians. He is most important for his correspondence with other mathematicians including Euler and Leibniz. *SAU (Can't tell your Bernoulli's without a scorecard? Check out "A Confusion of Bernoulli's" by the Renaissance Mathematicus.)

1823 Birthdate of Enrico Betti. In algebra, he penetrated the ideas of Galois by relating them to the work of Ruffini and Abel. In analysis, his work on elliptic functions was further developed by Weierstrass. In “Analysis situs”, his research inspired Poincar´e, who coined the term “Betti numbers” to characterize the connectivity of surfaces. *VFR He was the first to give a proof that the Galois group is closed under multiplication. Betti also wrote a pioneering memoir on topology, the study of surfaces and space. Betti did important work in theoretical physics, in particular in potential theory and elasticity.*TIS

1833 Alfred Bernhard Nobel (21 Oct 1833; 10 Dec 1896) a Swedish chemist and inventor of dynamite and other, more powerful explosives, was born in Stockholm. An explosives expert like his father, in 1866 he invented a safe and manageable form of nitroglycerin he called dynamite, and later, smokeless gunpowder and (1875) gelignite. He helped to create an industrial empire manufacturing many of his other inventions. Nobel amassed a huge fortune, much of which he left in a fund to endow the annual prizes that bear his name. First awarded in 1901, these prizes were for achievements in the areas of physics, chemistry, physiology or medicine, literature, and peace. The sixth prize, for economics, was instituted in his honour in 1969. *TIS (The well-known anecdote that there is no Nobel prize in mathematics as he thought Mittag-Leffler might win it seems to have no basis in fact

1855 Giovanni Battista Guccia (21 Oct 1855 in Palermo, Italy - 29 Oct 1914 in Palermo, Italy) Guccia's work was on geometry, in particular Cremona transformations, classification of curves and projective properties of curves. His results published in volume one of the Rendiconti del Circolo Matematico di Palermo were extended by Corrado Segre in 1888 and Castelnuovo in 1897. *SAU

1882 Harry Schultz Vandiver (21 Oct 1882 in Philadelphia, Pennsylvania, USA - 9 Jan 1973 in Austin, Texas, USA) Harry developed an antagonism towards public education and left Central High School at an early age to work as a customshouse broker for his father's firm. D H Lehmer writes:
He was self-taught in his youth and must have had little patience with secondary education since he never graduated from high school. This impatience, especially with mathematical education, was to last the rest of his life.
When he was eighteen years old he began to solve many of the number theory problems which were posed in the American Mathematical Monthly, regularly submitting solutions. In addition to solving problems, he began to pose problems himself. By 1902 he was contributing papers to the Monthly. For example he published two short papers in 1902 A Problem Connected with Mersenne's Numbers and Applications of a Theorem Regarding Circulants.
In 1904 he collaborated with Birkhoff on a paper on the prime factors of a^n - b^n published in the Annals of Mathematics. In fact the result they proved was not new, although they were not aware of the earlier work which had been published by A S Bang in 1886. Also in the year 1904, Vandiver published On Some Special Arithmetic Congruences in the American Mathematical Monthly and, although still working as an agent for his father's firm, he did attend some graduate lectures at the University of Pennsylvania. He also began reading papers on algebraic number theory and embarked on a study of the work of Kummer, in particular his contributions to solving Fermat's Last Theorem. Over the next few years he published papers such as Theory of finite algebras (1912), Note on Fermat's last theorem (1914), and Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat's quotient and Bernoulli's numbers (1917).
The outbreak of World War I in 1914 did not directly affect the United States since the Democratic president Woodrow Wilson made a declaration of neutrality. This policy was controversial but popular enough to see him re-elected in 1916. However US shipping was being disrupted (and sunk) by German submarines and, under pressure from Republicans, Wilson declared war on Germany on 6 April 1917. Vandiver joined the United States Naval Reserve and continued to serve until 1919 when the war had ended. After leaving the Naval Reserve, Birkhoff persuaded Vandiver to become a professional mathematician and to accept a post at Cornell University in 1919. Despite having no formal qualifications, his excellent publication record clearly showed his high quality and he was appointed as an instructor. He also worked during the summer with Dickson at Chicago on his classic treatise History of the Theory of Numbers. In 1924 he moved to the University of Texas where he was appointed as an Associate Professor. He spent the rest of his career at the University of Texas, being promoted to full professor in 1925, then named as distinguished professor of applied mathematics and astronomy in 1947. He continued in this role until he retired in 1966 at the age of 84. *SAU

1893 Bill Ferrar graduated from Oxford after an undergraduate career interrupted by World War I. He lectured at Bangor and Edinburgh before moving back to Oxford. He worked in college administration and eventually became Principal of Hertford College. He worked on the convergence of series. *SAU

1914 Martin Gardner born in Tulsa, Oklahoma. From 1957 to 1980 he wrote the “Mathematical Games” column in Scientific American. Many of these columns have been collected together into the numerous books that he has written. If you want to know more about the person who has done more to popularize mathematics than any other, see the interview with Gardner in Mathematical People. Proiles and Interviews (1985), edited by Donald J. Albers and G. L. Alexanderson, pp. 94–107. *VFR (My favorite tribute to Martin was this one from Ron Graham, “Martin has turned thousands of children into mathematicians, and thousands of mathematicians into children.”)

1872 Jacques Babinet (5 March 1794 – 21 October 1872) was a French physicist, mathematician, and astronomer who is best known for his contributions to optics. A graduate of the École Polytechnique, which he left in 1812 for the Military School at Metz, he was later a professor at the Sorbonne and at the Collège de France. In 1840, he was elected as a member of the Académie Royale des Sciences. He was also an astronomer of the Bureau des Longitudes.
Among Babinet's accomplishments are the 1827 standardization of the Ångström unit for measuring light using the red Cadmium line's wavelength, and the principle (Babinet's principle) that similar diffraction patterns are produced by two complementary screens. He was the first to suggest using wavelengths of light to standardize measurements. His idea was first used between 1960 and 1983, when a meter was defined as a wavelength of light from krypton gas.
In addition to his brilliant lectures on meteorology and optics research, Babinet was also a great promoter of science, an amusing and clever lecturer, and a brilliant, entertaining and prolific author of popular scientific articles. Unlike the majority of his contemporaries, Babinet was beloved by many for his kindly and charitable nature. He is known for the invention of polariscope and an optical goniometer. *Wik

1881 Heinrich Eduard Heine (16 March 1821 in Berlin, Germany - 21 Oct 1881 in Halle, Germany) Heine is best remembered for the Heine-Borel theorem. He was responsible for the introduction of the idea of uniform continuity.*SAU

1967 Ejnar Hertzsprung (8 Oct 1873, 21 Oct 1967) Danish astronomer who classified types of stars by relating their surface temperature (or color) to their absolute brightness. A few years later Russell illustrated this relationship graphically in what is now known as the Hertzsprung-Russell diagram, which has become fundamental to the study of stellar evolution. In 1913 he established the luminosity scale of Cepheid variable stars.*TIS

1969 WacLlaw Sierpinski (14 March 1882 in Warsaw, - 21 Oct 1969 in Warsaw) His grave carries—according to his wish—the inscription: Investigator of infinity. [Kuratowski, A Half Century of Polish Mathematics, p. 173; Works, p. 14] *VFR Sierpinski's most important work is in the area of set theory, point set topology and number theory. In set theory he made important contributions to the axiom of choice and to the continuum hypothesis. *SAU

2000 Dirk Jan Struik (30 Sept 1894 , 21 Oct 2000) Dirk Jan Struik (September 30, 1894 – October 21, 2000) was a Dutch mathematician and Marxian theoretician who spent most of his life in the United States.
In 1924, funded by a Rockefeller fellowship, Struik traveled to Rome to collaborate with the Italian mathematician Tullio Levi-Civita. It was in Rome that Struik first developed a keen interest in the history of mathematics. In 1925, thanks to an extension of his fellowship, Struik went to Göttingen to work with Richard Courant compiling Felix Klein's lectures on the history of 19th-century mathematics. He also started researching Renaissance mathematics at this time.
Struik was a steadfast Marxist. Having joined the Communist Party of the Netherlands in 1919, he remained a Party member his entire life. When asked, upon the occasion of his 100th birthday, how he managed to pen peer-reviewed journal articles at such an advanced age, Struik replied blithely that he had the "3Ms" a man needs to sustain himself: Marriage (his wife, Saly Ruth Ramler, was not alive when he turned one hundred in 1994), Mathematics, and Marxism.
It is therefore not surprising that Dirk suffered persecution during the McCarthyite era. He was accused of being a Soviet spy, a charge he vehemently denied. Invoking the First and Fifth Amendments of the U.S. Constitution, he refused to answer any of the 200 questions put forward to him during the HUAC hearing. He was suspended from teaching for five years (with full salary) by MIT in the 1950s. Struik was re-instated in 1956. He retired from MIT in 1960 as Professor Emeritus of Mathematics.
Aside from purely academic work, Struik also helped found the Journal of Science and Society, a Marxian journal on the history, sociology and development of science.
In 1950 Stuik published his Lectures on Classical Differential Geometry.
Struik's other major works include such classics as A Concise History of Mathematics, Yankee Science in the Making, The Birth of the Communist Manifesto, and A Source Book in Mathematics, 1200-1800, all of which are considered standard textbooks or references.
Struik died October 21, 2000, 21 days after celebrating his 106th birthday. *Wik

2002 Bernhard Hermann Neumann (15 Oct 1909 in Berlin, Germany - 21 Oct 2002 in Canberra, Australia) Neumann is one of the leading figures in group theory who has influenced the direction of the subject in many different ways. While still in Berlin he published his first group theory paper on the automorphism group of a free group. However his doctoral thesis at Cambridge introduced a new major area into group theory research. In his thesis he initiated the study of varieties of groups, that is classes of groups defined which are by a collection of laws which must hold when any group elements are substituted into them. *SAU

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Thursday, 20 October 2016

On This Day in Math - October 20

The mathematician plays a game in which he himself invents the rules while the physicist plays a game in which the rules are provided by nature, but as time goes on it becomes increasingly evident that the rules which the mathematician finds interesting are the same as those which nature has chosen.
~Paul Dirac

The 294th day of the year; 294 is a practical number because all numbers strictly less than 294 can be formed with sums of distinct divisors of 294. There are only 84 such numbers in the year.

294 is the number of planar 2-connected graphs with seven vertices.

Found this oddity in my notes: 111152- 2942 = 123,456,789

2(294)+9(294)+4(294) - 1 is 4409, a prime


1698 Halley began a scientific voyage on HMS Paramore & set out to measure magnetic variation & search for Terra Incognita. His log entry from the 20th says "Wind WSW a Small Gale I sailed from Deptford about Noon " *Kate Morant‏@KateMorant (Deptford is a small area near Greenwich, east of London along the Thames)

1735 Benjamin Franklin’s paper “On the Usefulness of Mathematics,” appeared in the Pennsylvania Gazette. [NCTM yearbook # 32(1970), p. 20]*VFR
I have also seen the date given as October 30. Some historians also question whether or not this was actually written by Franklin.

1744 In Euler's missing letter of October 20, 1744, Euler announced that he had just discovered a simple curve that exhibited something called a cusp of the second kind or a ramphoid from the Greek for a bird’s beak. L'H^opital (1661-1704) is responsible for defining these two types of cusps. In 1740, Jean-Paul de Gua de Malves (1713- 1785) published a proof that no algebraic curve could have a cusp of the second kind in [Gua de Malves 1740]. Euler was familiar with Gua de Malves' work and had initially accepted his result, but in 1744 he discovered that there was a subtle flaw in the supposed proof. In this letter, he wrote to Cramer that even in the fourth order there is a curved line of this kind, whose equation is, y4- 2xy2 + x2 = x3+ 4yx, which simplifies to y = x(1/2) +/- x(3/4)

*Ed Sandifer, How Euler Did It, MAA

1881 In a letter to Newcomb dated Oct. 20, 1881, Sylvester writes, "Who is to be the new superintendent of the Coast Survey?
Why should you not allow it to be known that you would accept the appointment supposing you would be willing to do so!" Sylvester was the eminent British mathematician who served as the first chairman of the Department of Mathematics at the Johns Hopkins University (1876-1883). He returned to England in 1884 to occupy the chair of Savilian Professor of Geometry at Oxford. *THE CHARLES S. PElRCE-SIMON NEWCOMB CORRESPONDENCE

1958 Italy issued a stamp to celebrate the 350th anniversary of the birth of Evangelista Torricelli, mathematician and physicist. [Scott #754]. *VFR

1975 The Public Record office in London released information on the Colossus, one of the first programmable electronic digital computers. It was built in 1943 for work on cryptography. The Colossus machines were electronic computing devices used by British codebreakers to help read encrypted German messages during World War II. They used vacuum tubes (thermionic valves) to perform the calculations.
Colossus was designed by engineer Tommy Flowers with input from Harry Fensom, Allen Coombs, Sidney Broadhurst and William Chandler at the Post Office Research Station, Dollis Hill to solve a problem posed by mathematician Max Newman at Bletchley Park. The prototype, Colossus Mark 1, was shown to be working in December 1943 and was operational at Bletchley Park by February 1944. An improved Colossus Mark 2 first worked on 1 June 1944, just in time for the Normandy Landings. Ten Colossi were in use by the end of the war. No information about the computer was released until this date. *Wik

1980, Carl Sagan appeared on the cover of TIME

1983, the length of the meter was redefined by the international body Conférence Générale des Poids et Mesures (GCPM) by a method to give greater accuracy. Originally based on one ten-millionth of the distance from the North Pole to the equator, the meter was re-established as the distance that light travels in a vacuum in 1/299,792,458 of a second *TIS

2004 The First Ubuntu Linux Distribution Released. Ubuntu is a free computer operating system based on Debian GNU​/Linux. Its name loosely translated from the Zulu means "humanity," or "a person is a person only through other people." Ubuntu is intended to provide an up-to-date, stable operating system for the average user, with a strong focus on usability and ease of installation. Ubuntu has been rated the most popular Linux distribution for the desktop, claiming approximately 30 percent of desktop Linux installations, according to the 2007 Desktop Linux Market survey. Ubuntu is open source and free. It is sponsored by Canonical Ltd, which is owned by South African entrepreneur Mark Shuttleworth​.*CHM

1616 Thomas Bartholin (20 Oct 1616; 4 Dec 1680) Danish anatomist and mathematician who was first to describe fully the entire human lymphatic system (1652). He was one of the earliest defenders of Harvey's discovery of the circulation of blood. He was a member of the mathematical faculty of the University of Copenhagen, 1647-49, and anatomy professor there, 1649-61. He published many works on anatomy, physiology and medicine, (1645-74) and in 1658 a general work on pharmacology. In 1654, along with the rest of the medical faculty at the university, Bartholin published advice to the people on how to take care of themselves during the plague. King Christian V named Bartholin as his personal physician, with an annual salary, although Bartolin rarely had to treat the king. *TIS

1632 Sir Christopher Wren (20 Oct 1632; 25 Feb 1723) Architect, astronomer, and geometrician who was the greatest English architect of his time whose famous masterpiece is St. Paul's Cathedral, among many other buildings after London's Great Fire of 1666. Wren learned scientific skills as an assistant to an eminent anatomist. Through astronomy, he developed skills in working models, diagrams and charting that proved useful when he entered architecture. He inventing a "weather clock" similar to a modern barometer, new engraving methods, and helped develop a blood transfusion technique. He was president of the Royal Society 1680-82. His scientific work was highly regarded by Sir Isaac Newton as stated in the Principia. *TIS (I love the message on his tomb in the Crypt of St. Pauls: Si monumentum requiris circumspice ...."Reader, if you seek his monument, look about you."

1863 William Henry Young (20 Oct 1863 in London, England - 7 July 1942 in Lausanne, Switzerland) discovered Lebesgue integration, independently but 2 years after Lebesgue. He studied Fourier series and orthogonal series in general.

1865 Aleksandr Petrovich Kotelnikov (20 Oct 1865 in Kazan, Russia - 6 March 1944 in Moscow, USSR) In 1927 he published one of his most important works, The Principle of Relativity and Lobachevsky's Geometry. He also worked on quaternions and applied them to mechanics and geometry. Among his other major pieces of work was to edit the Complete Works of two mathematicians, Lobachevsky and Zhukovsky. He received many honours for his work, being named Honoured Scientist in 1934, then one year before he died he was awarded the State Prize of the USSR. *SAU

1891 Sir James Chadwick (20 Oct 1891; 24 Jul 1974) English physicist who received the Nobel Prize for Physics (1935) for his discovery of the neutron. He studied at Cambridge, and in Berlin under Geiger, then worked at the Cavendish Laboratory with Rutherford, where he investigated the structure of the atom. He worked on the scattering of alpha particles and on nuclear disintegration. By bombarding beryllium with alpha particles, Chadwick discovered the neutron - a neutral particle in the atom's nucleus - for which he received the Nobel Prize for Physics in 1935. In 1932, Chadwick coined the name "neutron," which he described in an article in the journal Nature. He led the UK's work on the atomic bomb in WW II, and was knighted in 1945. *TIS

1904 Hans Lewy (October 20, 1904 – August 23, 1988) was an American mathematician, known for his work on partial differential equations and on the theory of functions of several complex variables.*Wik

1914 R. H. Bing (October 20, 1914, Oakwood, Texas – April 28, 1986, Austin, Texas) was an American mathematician who worked mainly in the areas of geometric topology and continuum theory. His first two names were just single letters that do not stand for anything. Bing's mathematical research was almost exclusively in 3-manifold theory and in particular, the geometric topology of R3. The term Bing-type topology was coined to describe the style of methods used by Bing.
Bing established his reputation early on in 1946, soon after completing his Ph.D. dissertation, by solving the Kline sphere characterization problem. In 1948 he proved that the pseudo-arc is homogeneous, contradicting a published but erroneous 'proof' to the contrary. In 1951 he proved results regarding the metrizability of topological spaces, including what would later be called the Bing-Nagata-Smirnov metrization theorem.*Wik

1631 Michael Maestlin (30 September 1550, Göppingen – 20 October 1631, Tübingen) was a German astronomer and mathematician, known for being the mentor of Johannes Kepler.
Maestlin studied theology, mathematics, and astronomy/astrology at the Tübinger Stift in Tübingen, a town in Württemberg. He graduated as Magister in 1571 and became in 1576 a Lutheran deacon in Backnang, continuing his studies there.
In 1580 he became a Professor of mathematics, first at the University of Heidelberg, then at the University of Tübingen where he taught for 47 years from 1583. In 1582 Maestlin wrote a popular introduction to astronomy.
Among his students was Johannes Kepler (1571-1630). Although he primarily taught the traditional geocentric Ptolemaic view of the solar system, Maestlin was also one of the first to accept and teach the heliocentric Copernican view. Maestlin corresponded with Kepler frequently and played a sizable part in his adoption of the Copernican system. Galileo Galilei's adoption of heliocentrism was also attributed to Maestlin.
The first known calculation [3] of the reciprocal of the golden ratio as a decimal of "about 0.6180340" was written in 1597 by Maestlin in a letter to Kepler.
He is also remembered for :
Catalogued the Pleiades cluster on 24 December 1579. Eleven stars in the cluster were recorded by Maestlin, and possibly as many as fourteen were observed.
Occultation of Mars by Venus on 13 October 1590, seen by Maestlin at Heidelberg. *Wik

1896 François-Félix Tisserand (13 Jan 1845, 20 Oct 1896) French astronomer whose 4-volume textbook Traité de mécanique céleste (1889-96; "Treatise on Celestial Mechanics") updated Pierre-Simon Laplace's work. At age 28, he was named Director at Toulouse Observatory (1873-78). He went to Japan to observe the 1874 transit of Venus. The 83-cm telescope he installed at the Toulouse Observatory in 1875 had a wooden base insufficiently stable for photographic work, but he was able to use it for observation of the satellites of Jupiter and of Saturn. From 1892 until his death he was director of the Paris Observatory, where he completed the major work, Catalogue photographique de la carte du ciel, and arranged for its publication.*TIS

1972 Harlow Shapley (2 Nov 1885, 20 Oct 1972) Astronomer, known as "The Modern Copernicus," who discovered the Sun's position in the galaxy. From 1914 to 1921 he was at Mt. Wilson Observatory, where he calibrated Henrietta S. Leavitt's period vs. luminosity relation for Cepheid variable stars and used it to determine the distances of globular clusters. He boldly and correctly proclaimed that the globulars outline the Galaxy, and that the Galaxy is far larger than was generally believed and centered thousands of light years away in the direction of Sagittarius. In the early 1920's, Shapley entered a "Great Debate" with Heber D. Curtis. They truly argued over the "Scale of the Universe."*TIS

1974 Harold Ruse graduated from Oxford and held a position at Edinburgh University. he later became a professor at Southampton and Leeds. He worked on Harmonic Spaces. He became Secretary of the EMS in 1930 and President in 1935. *SAU

1984 Paul A.M. Dirac (8 Aug 1902, 20 Oct 1984) English physicist and mathematician who originated quantum mechanics and the spinning electron theory. In 1933 he shared the Nobel Prize for Physics with the Austrian physicist Erwin Schrödinger.*TIS

1987 Andrey Nikolayevich Kolmogorov (25 Apr 1903, 20 Oct 1987) Russian mathematician whose basic postulates for probability theory that have continued to be an integral part of analysis. This work had diverse applications such as his study of the motion of planets (1954), or the turbulent air flow from a jet engine (1941). In topology, he investigated cohomology groups. He made a major contribution to answering the probability part of Hilbert's Sixth Problem, and completely resolved (1957) Hilbert's Thirteenth Problem. Kolmogorov was active in a project to provide special education for gifted children, not only by writing textbooks and in teaching them, but in expanding their interests to be not necessarily in mathematics, but with literature, music, and healthy activity such as on hikes and expeditions. *TIS

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Wednesday, 19 October 2016

On This Day in Math - October 19

I am a great believer in the simplicity of things and as you probably know I am inclined to hang on to broad & simple ideas like grim death until evidence is too strong for my tenacity.
~Sir Ernest Rutherford

The 293rd day of the year; 293 is a Sophie Germain Prime. (A prime number p such that 2p + 1 is also prime.) Sophie Germain used them in her investigations of Fermat's Last Theorem. It is an unproven conjecture that there are infinitely many Sophie Germain primes.

293 is also the sum of five cubes, \(293 = 2^3 + 2^3 + 3^3 + 5^3 + 5^3\)

and from Jim Wilder @Wilderlab : 293202 begins with the digits 202 and 202293 begins with the digits 293.


1698 Halley began a scientific voyage on HMS Paramore & set out to measure magnetic variation & search for Terra Incognita *Kate Morant‏@KateMorant
This was the first time a sea voyage had been planned for the sole purpose of scientific discovery. 

1752 Franklin described his kite experiment in a letter written in Philadelphia and addressed to Peter Collinson, who had earlier provided Franklin with some simple apparatus for performing electrical experiments. A copy of the original letter is at present in the archives of the Royal Society in London. *Julian Rubin web site

1759 Gauss writes,in a letter to his former teacher, E. A. W. von Zimmermann, when he showed up at the Göttingen University library, "I cannot deny, that I found it very unpleasant that most of my beautiful discoveries in indefinite analysis were not original. What consoles me is this. All of Euler's discoveries that I have so far found, I have made also, and still more so. I have found a more general, and, I think, more natural viewpoint; yet I still see an immeasurable field before me..." *Animating Creativity, The LaRouche Youth Movement web page.

1892: The first long-distance telephone line opened between the cities of New York and Chicago, although it could only handle one call at a time.
Seated at a telephone in the American Telephone and Telegraph Company’s office in Quincy street, Chicago Mayor Washburne conducted Chicago’s end of the above conversation. At the. other end of the wire was Mayor Grant of New York. With this simple ceremony the long-distance telephone between Chicago and New York was formally placed in service.

Sixty persons were present to see it done. They were telephone men, merchants, and newspaper men. There were 150 people around Mayor Grant at the company’s office in Cortland street. New York, and the company so managed matters that everybody got a chance to test the workings of the line. They invited all to stand beneath two funnels fastened to the gas fixture and keep perfectly still. They did so and heard the “Star Spangled Banner” played by a cornetist in New York. Then the New York crowd gathered around similar funnels while Cornetist Cobb of Johnny Hand’s orchestra played the national anthem for them. *

This was not the first long distance call in the US, that had happened fifteen years earlier in California. The world's first long-distance telephone line, established in 1877, connected French Corral with Bowman Lake (previously known as French Lake) at the headwaters of the Yuba River. It was strung across trees and poles for a distance of 60 mi (97 km) in Nevada County, California, passing through Birchville, Sweetland, North San Juan, Cherokee, North Columbia, Lake City, North Bloomfield, Moores Flat, Graniteville, and Milton.
The line was operated by the Ridge Telephone Company for the service of Milton Mining and Water Company, as well as other water companies. The line was an improvement over the system used in nearby Downieville, California The site is now a California Historical Landmark. *Wik Unfortunately, it seems no one made note of the first conversation.

1901 Alberto Santos-Dumont won the French Aero Club’s Deutsch Prize, rounding the Eiffel Tower and landing at Parc Saint Cloud in twenty-nine minutes and thirty seconds in his dirigible. Later it became common that a crowd would gather to see the aviator driving his Baladeuse (The Wanderer), a personal sized dirigible, over the streets as if it were a carriage or automobile.
A few years later, on October 23, 1906, Santos-Dumont won the Archdeacon prize by flying his Hargrave box kite inspired aircraft at Bagatelle in Paris. He was hailed by many in Europe as the first to fly, despite the fact that the Wright Brothers had achieved such a feat three years earlier in the United Sates. But Orville and Wilbur Wright kept their invention under wraps, avoiding any public exhibitions while they sought a patent. Most aeronauts in Europe considered them to be bluffing., *

1948 The National Bureau of Standards authorized construction of its Standards Western Automatic Computer. The machine, which would be built at the Institute for Numerical Analysis in Los Angeles, had an objective to compute using already-developed technology. This was in contrast to the machine’s cousin, the Standards Eastern Automatic Computer, which tested components and systems for computer *CHM

1965 The London Times reported that an archaeologist has located what he believes to be the tomb of Archimedes.*VFR

In 1973, a US Federal Judge signed his decision following a lengthy court trial which declared the ENIAC patent invalid and belatedly credited physicist John Atanasoff with developing the first electronic digital computer, the Atanasoff- Berry Computer or the ABC. Built in 1937-42 at Iowa State University by Atanadoff and a graduate student, Clifford Berry, it introduced the ideas of binary arithmetic, regenerative memory, and logic circuits. These ideas were communicated from Atanasoff to John Mauchly, who used them in the design of the better-known ENIAC built and patented several years later.*TIS

1994 The Pentium FDIV bug error was isolated to the Pentium Pro chip by Professor Thomas R. Nicely at Lynchburg College, Virginia, USA while working on Brun's constant (the sum of the reciprocals of the odd twin primes).   Nicely had noticed some inconsistencies in the calculations on June 13, 1994 shortly after adding a Pentium system to his group of computers, but was unable to eliminate other factors (such as programming errors, motherboard chipsets, etc.) until October 19, 1994. On October 24, 1994 he reported the issue to Intel.   The bug was rarely encountered by average users (Byte magazine estimated that 1 in 9 billion floating point divides with random parameters would produce inaccurate results) *Wik

2014 Small chance that Comet C/2013 A1 (Siding Spring), discovered in the beginning of 2013, might collide with Mars. At the moment, based on the observation arc of 74 days, the nominal close approach distance between the red planet and the comet might be as little as 0.00073 AU, that is approximately 109,200 km! Distance to Mars’ natural satellite Deimos will be smaller by 6000 km, making it 103,000 km. On the 19th October 2014, the comet might reach apparent magnitude of -8…-8.5, as seen from Mars! *


1795 Arthur Jules Morin​ (19 October 1795 – 7 February 1880) was a French physicist. He conducted experiments in mechanics and invented the Morin dynamometer.
In 1850, he was elected a foreign member of the Royal Swedish Academy of Sciences. His name is one of the 72 names inscribed on the Eiffel Tower.*Wik (He was also the director of my favorite Paris Museum, Musee des Arts et Métiers.) In the issue of Nature which appeared on 5 February 1880 the following report appears:-
We regret to state that General Morin, the well-known director of the Conservatoire des Arts et Métiers, is lying in a very precarious state in consequence of a severe cold. Great anxiety is felt for him at the Institute, of which he is one of the most respected and popular members. The General is aged 85 years. In the following issue of Nature, his death in Paris on 7 February was reported. *SAU

1871 John Miller (19 Oct 1871 in Glasgow, Scotland - 14 July 1956 in Victoria Infirmary, Glasgow, Scotland) studied at Glasgow and Göttingen. He returned to Glasgow to the Royal College of Science and Technology (the precursor to Strathclyde University). He became President of the EMS in 1913. *SAU

1903 Jean Frédéric Auguste Delsarte (October 19, 1903, Fourmies – November 28, 1968, Nancy) was a French mathematician known for his work in mathematical analysis, in particular, for introducing mean-periodic functions and generalised shift operators. He was one of the founders of the Bourbaki group.*Wik

1910 Subrahmanyan Chandrasekhar (19 Oct 1910; 21 Aug 1995) Indian-born American astrophysicist who (with William A.Fowler) won the 1983 Nobel Prize for Physics for formulating the currently accepted theory on the later evolutionary stages of massive stars. He was one of the first scientists to combine the disciplines of physics and astronomy. Early in his career he demonstrated that there is an upper limit, now called the Chandrasekhar limit, to the mass of a white dwarf star. A white dwarf is the last stage in the evolution of a star such as the Sun. When the nuclear energy source in the center of a star such as the Sun is exhausted, it collapses to form a white dwarf. Further, it shows that stars much more massive than the Sun must either explode or form black holes. *TIS


1586 Egnatio Danti was an Italian Dominican who made contributions to architecture, geography and astronomy.Finally, among Danti's publications, we mention Trattato del radio latino (1586) which is Danti's work describing his surveying instrument. This book appeared in the year in which Danti died. The other task he undertook just before his death was to travel to Rome, at the request of Pope Sixtus, to assist the architect Domenico Fontana, who had become architect to the papacy when Sixtus was elected, in moving the Egyptian obelisk from its place in the circus of the Vatican. The obelisk had been brought to Rome in the 1st century AD and Danti and Fontana erected it in 1586 where it now stands in the centre of St Peter's Square in the Vatican. After his return from this trip to Rome, Danti contracted pneumonia from which he died. *SAU

1875 Sir Charles Wheatstone (6 Feb 1802, 19 Oct 1875) English physicist who popularized the Wheatstone bridge, a device that accurately measured electrical resistance and became widely used in laboratories. He didn't actually invent the "Wheatstone Bridge". His contemporary, Samuel Hunter Christie, came up with the idea of the bridge circuit, but Wheatstone set the precedent for using it in the way in which it has been most commonly used. Over time, the device became associated with him and took on his name. He did, however, invent the concertina (1829), the stereoscope (1838), and an early form of the telegraph. He also  developed a chronoscope (1842) to determine the velocity of projectiles at an English gunnery.*TIS (For students of discrete math, or interested in codes, Wheatstone was also the creator of the Playfair Cipher.) A story is told that among friends he was "the life of the party" however he was afraid to speak in public. It was not unlike Wheatstone to set up a speaking engagement and cancel at the very last minute due to an awful case of stage fright. As a result of this condition Michael Faraday commentated much of Whetstone's work to the Royal Society through Faraday's famous Friday night lectures. On one such occasion Wheatstone was scheduled to speak at the Royal society and of course literally ran out the back door of the conference hall at the last minute. Faraday stepped onto the stage and delivered one of his most famous lectures, which was on the discovery of the Electro-magnetic field.

1878 Irénée-Jules Bienaymé (28 August 1796 - 19 October 1878) was a French statistician. He built on the legacy of Laplace generalizing his least squares method. He contributed to the fields and probability, and statistics and to their application to finance, demography and social sciences. In particular, he formulated the Bienaymé-Chebyshev inequality concerning the law of large numbers and the Bienaymé formula for the variance of a sum of uncorrelated random variables.*Wik

1890 Émile Léonard Mathieu (15 May 1835 in Metz, France - 19 Oct 1890 in Nancy, France) is remembered especially for his discovery (in 1860 and 1873) of five sporadic simple groups named after him. These were studied in his thesis on transitive functions.*SAU

1937 Sir Ernest Rutherford (30 Aug 1871, 19 Oct 1937) (baron) New Zealand-born British physicist who laid the groundwork for the development of nuclear physics. He worked under Sir J. J. Thomson at Cambridge University (1895-98). Then he collaborated with Frederick Soddy in studying radioactivity. In 1899 he discovered alpha particles and beta particles, followed by the discovery of gamma radiation the following year. In 1905, with Soddy, he announced that radioactive decay involves a series of transformations. In 1907, with Hans Geiger and Ernest Marsden, he devised the alpha-particle scattering experiment that led in 1911 to the discovery of the atomic nucleus. In 1919 he achieved the artificial splitting of light atoms. In 1908 he was awarded the Nobel Prize for Chemistry. *TIS

1944 Denes König (21 Sept 1884 in Budapest, Hungary - 19 Oct 1944 in Budapest, Hungary) At Göttingen, König had been influenced by Minkowski's lectures on the four color problem. These lectures contributed to his growing interest in graph theory, on which he lectured in Budapest from 1911. His book, Theorie der endlichen und unendlichen Graphen, was published in 1936, and was a major factor in the growth of interest in graph theory worldwide. It was eventually translated into English under the title Theory of finite and infinite graphs (translated by R McCoart), Birkhauser, 1990; this also contains a biographical sketch by Tibor Gallai​.  König's work on the factorization of bipartite graphs relates closely to the marriage problem of Philip Hall. König's use of graphs to give a simpler proof of a determinant result of Frobenius seems to have led to some hostility between the two men.
After the Nazi occupation of Hungary, König worked to help persecuted mathematicians. This led to his death a few days after the Hungarian National Socialist Party took over the country. *SAU

1979 Marjorie Lee Browne (September 9, 1914 – October 19, 1979) was a notable mathematics educator, the second African-American woman to receive a doctoral degree in the U.S., and one of the first black women to receive a doctorate in mathematics in the U.S.*Wik

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Tuesday, 18 October 2016

On This Day in Math - October 18

All models are wrong, some models are useful.

~George Box

The 292nd day of the year; The continued fraction representation of pi  is [3; 7, 15, 1, 292, 1, 1, 1, 2...]; the convergent obtained by  truncating before the surprisingly large term 292 yields the excellent  rational approximation \( \frac{355}{113} \) for pi *Wik

292 is the number of ways to make change for 1 dollar (or for 1 Euro), using only 1, 5 and 25 cent coins (base five coins).

292! + 291! ± 1 are 595-digit twin primes. (are there smaller sums of consecutive factorials like this that are twin primes?)

1092 Walcher, the Prior of the monastery in Great Malvern, U.K., carried out the first known Western Experiment to improve astronomical predictions when he pointed an astrolabe toward a lunar eclipse. At this time his astrolabe was one of only a few in Europe. *Jonathan Lyons, The House of Wisdom: How the Arabs Transformed Western Civilization.

1640 Pierre de Fermat (1601–1665) explains his ‘little theorem’ to Bernard Frenicle de Bessey in a follow up to two previous letters. ("On the subject of progressions, I have sent to you in advance the propositions that serve to determine the properties of powers minus one"). The theorem, which states that np−1 ≡ 1 (mod p) if p is prime and relatively prime to n, was proved by Euler in 1736 by induction on n.[Scientific American, December 1982]
Fermat actually made three statements:
1) When the exponent, n, is composite, 2n-1 is also composite,
2) When the exponent, n, is prime, 2n -2 is divisible by 2*n,
3) When the exponent, n, is prime, the number 2n -1 can not be divided by any number less than 2n+1

*Jacqueline Stedall, Mathematics Emerging

1740  In a letter to Johann Bernoulli, Euler uses imaginary in the exponent. exi + e-xi = 2 cos(x) {note Euler used squareroot of -1 rather than i. Euler would be the first to use i for the imaginary constant, but not until a paper he presents in St. Petersburg in 1777.} Cajori seems to imply, but does not state explicitly, that this is the first time an imaginary has been used as an exponent.

1954, Texas Instruments & Industrial Development Engineering Assoc launch the first transistor radio, Regency TR-1,

1955, a new atomic subparticle called a negative proton (antiproton) was discovered at U.C. Berkeley. The hunt for antimatter began in earnest in 1932, with the discovery of the positron, a particle with the mass of an electron and a positive charge. However, creating an antiproton would be far more difficult since it needs nearly 2,000 times the energy. In 1955, the most powerful "atom smasher" in the world, the Bevatron built at Berkeley could provide the required energy. Detection was accomplished with a maze of magnets and electronic counters through which only antiprotons could pass. After several hours of bombarding copper with protons accelerated to 6.2 billion electron volts of energy, the scientists counted a total of 60 antiprotons.*TIS

1962, Dr. James D. Watson of the U.S., Dr. Francis Crick and Dr. Maurice Wilkins of Britain won the Nobel Prize for Medicine and Physiology for their work in determining the double-helix molecular structure of DNA (deoxyribonucleic acid).*TIS


1863 Alan Archibald Campbell-Swinton, FRS (October 18, 1863, Scotland - February 19, 1930, London) was a Scottish consulting electrical engineer. He was an earlier experimenter in cathode rays and after 1896 he was frequently called upon by the medical professesion to take "Roentgen Pictures" of bones.
He described an electronic method of producing television in a June 18,1908 letter to Nature.
He gave a speech in London in 1911 where he described in great detail how distant electric vision could be achieved. This was to be done by using cathode ray tubes (CRTs) at both the transmitting and receiving ends.[4] This was the first iteration of the electronic television which is still in use today. When Swinton gave his speech others had already been experimenting with the use of cathode ray tubes as a receiver, but the use of the technology as a transmitter was unheard of. *Wik

1902 (Ernst) Pascual Jordan (18 October 1902 in Hanover, German Empire; d. 31 July 1980 in Hamburg, Federal Republic of Germany) German physicist who in the late 1920s founded (with Max Born and later Werner Heisenberg) quantum mechanics using matrix methods, showing how light could be interpreted as composed of discrete quanta of energy. Later, (with Wolfgang Pauli and Eugene Wigner), while it was still in its early stages of development, he contributed to the quantum mechancs of electron-photon interactions, now called quantum electrodynamics. He also originated (concurrently with Robert Dicke) a theory of cosmology that proposed to make the universal constants of nature, (such as the universal gravitational constant G), variable over time. *TIS

1919 George Edward Pelham Box (born 18 October 1919) is a statistician, who has made important contributions in the areas of quality control, time-series analysis, design of experiments, and Bayesian inference.
Box has written research papers and published books. These include Statistics for experimenters (1978), Time series analysis: Forecasting and control (1979, with Gwilym Jenkins) and Bayesian inference in statistical analysis. (1973, with George C. Tiao). Today, his name is associated with important results in statistics such as Box–Jenkins models, Box–Cox transformations, Box–Behnken designs, and others. Box married Joan Fisher, the second of Ronald Fisher's five daughters. In 1978, Joan Fisher Box published a biography of Ronald Fisher, with substantial collaboration of Box. *Wik

1938 Phillip Griffiths (October 18, 1938, Raleigh, North Carolina -  ) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory.*Wik

1786 Alexander Wilson FRSE (1714 – 16 October 1786) was a Scottish surgeon, type-founder, astronomer, mathematician and meteorologist. He was the first scientist to record the use of kites in meteorological investigations. Wilson noted that sunspots viewed near the edge of the Sun's visible disk appear depressed below the solar surface, a phenomenon referred to as the Wilson effect. When the Royal Danish Academy of Sciences and Letters announced a prize to be awarded for the best essay on the nature of solar spots, Wilson submitted an entry. On 18 February 1772 the Academy presented Wilson with a gold medal for his work on sunspots.*Wik

1793 John Wilson (6 Aug 1741 in Applethwaite, Westmoreland, England - 18 Oct 1793 in Kendal, Westmoreland, England) In 1764 Wilson was elected a Fellow of Peterhouse and he taught mathematics at Cambridge with great skill, quickly gaining an outstanding reputation for himself. However, he was not to continue in the world of university teaching, for in 1766 he was called to the bar having begun a legal career on 22 January 1763 when he was admitted to the Middle Temple. It was a highly successful career, too.
He is best known among mathematicians for Wilson's theorem which states that
... if p is prime then 1 + (p - 1)! is divisible by p
This result was first published by Waring, without proof, and attributed to Wilson. Leibniz appears to have known the result. It was first proved by Lagrange in 1773 who showed that the converse is true, namely
... if n divides 1 + (n - 1)! then n is prime.
Almost certainly Wilson's theorem was a guess made by him, based on the evidence of a number of special cases, which neither he nor Waring knew how to prove. *SAU

1845 Jean-Dominique Comte de Cassini (30 June 1748 in Paris, France - 18 Oct 1845 in Thury, France)  French mathematician and surveyor who worked on his father's map of France.  He was the son of César-François Cassini de Thury and was born at the Paris Observatory. In 1784 he succeeded his father as director of the observatory; but his plans for its restoration and re-equipment were wrecked in 1793 by the animosity of the National Assembly. His position having become intolerable, he resigned on September 6, and was thrown into prison in 1794, but released after seven months. He then withdrew to Thury, where he died fifty-one years later.
He published in 1770 an account of a voyage to America in 1768, undertaken as the commissary of the French Academy of Sciences with a view to testing Pierre Le Roy’s watches at sea. A memoir in which he described the operations superintended by him in 1787 for connecting the observatories of Paris and Greenwich by longitude-determinations appeared in 1791. He visited England for the purposes of the work, and saw William Herschel at Slough. He completed his father’s map of France, which was published by the Academy of Sciences in 1793. It served as the basis for the Atlas National (1791), showing France in departments.
Cassini’s Mémoires pour servir à l’histoire de l’observatoire de Paris (1810) embodied portions of an extensive work, the prospectus of which he had submitted to the Academy of Sciences in 1774. The volume included his Eloges of several academicians, and the autobiography of his great-grandfather, Giovanni Cassini.*Wik

1871 Charles Babbage,(26 Dec 1792-18 Oct 1871) computer pioneer. His obsession for mechanizing computation made him into an embittered and crotchety old man. He especially hated street musicians, whose activities, he figured, ruined a quarter of his working potential. *VFR   English mathematician and pioneer of mechanical computation, which he pursued to eliminate inaccuracies in mathematical tables. By 1822, he had a small calculating machine able to compute squares. He produced prototypes of portions of a larger Difference Engine. (Georg and Edvard Schuetz later constructed the first working devices to the same design which were successful in limited applications.) In 1833 he began his programmable Analytical Machine, a forerunner of modern computers. His other inventions include the cowcatcher, dynamometer, standard railroad gauge, uniform postal rates, occulting lights for lighthouses, Greenwich time signals, heliograph opthalmoscope. He also had an interest in cyphers and lock-picking. *TIS

1931 Thomas Alva Edison (11 Feb 1847-18 Oct 1931) Inventor, died in West Orange, NJ. He invented the first phonograph (1877) and the prototype of the practical incandescent electric light bulb (1879). His many inventions led to his being internationally known as "the wizard of Menlo Park", from the name of his first laboratory. By the late 1880s he was contributing to the development of motion pictures. By 1912 he was experimenting with talking pictures. His many inventions include a storage battery, a dictaphone, and a mimeograph. Meanwhile, he had become interested in the development of a system for widespread distribution of electric power from central generating stations. He held over 1,000 patents.In 1962 his second laboratory and home in West Orange, NJ, would be designated a National Historic Site.*TIS

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell